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The hardness and brittleness of ceramic materials are interrelated. Hard materials are more

apt to fracture in the vicinity of an indentation during a hardness test, while softer materials

tend to plastically deform to the indenter shape without fracturing. Measured hardness, in

turn, is affected by both specimen deformation and fracture processes. This interrelationship

is examined by means of extensive Vickers hardness testing. A new index of brittleness is

proposed.

1. Introduction
Ceramics are generally associated with distinctive
properties, some uniquely beneficial and some restrict-
ive, which determine the materials’ utilities. Among
these are hardness, brittleness and fracture toughness.
The measured hardness of a brittle material as deter-
mined by conventional tests (Vickers, Knoop, Ber-
kovich, Rockwell, etc.) is a measure of a material’s
resistance to deformation, densification, displacement
and fracture.

Conventional hardness measurements, which de-
pend on the size of an indentation resulting from an
applied load, are load dependent. This is especially
noticeable at lower indentation loads where most
measurements are made in order to avoid experi-
mental problems associated with fracture. Local frac-
ture around and under an indentation can affect the
depth of penetration or size of the indentation and thus
can be considered an intrinsic part of the indentation
process. Fracture also can create practical difficulties in
making hardness measurements because cracking at
indentation corners or fragmentation can hamper or
preclude plausible hardness measurements. The degree
of fracture at indentations in ceramics is load depen-
dent. Low loads are associated with deformation, while
fracture is conspicuously more prominent at high loads.

This paper examines the relationships between hard-
ness, load and fracture from an unconventional view-
point. The well known and pronounced hardness—load
dependency of ceramic materials is first reviewed, and
then the relationship between hardness and fracture is
explored. A new index of brittleness, based on fracture
energy and deformation energy ratios, is proposed.

1.1. The hardness—load dependency
Hardness is conventionally determined by applying
a load to a material via a geometrically defined inden-

ter, usually a steel or diamond ball or a diamond
pyramid. The ratio of this load to the contact (or
projected) area of the resultant impression is defined
as the hardness, H

H " a
P

d2
(1)

where P is the applied load; d is the size of the meas-
ured impression; and the indenter constant, a, depends
on the indenter geometry. The hardness of a material
is often characterized by a single numerical value, an
example being the hardness often provided in com-
pany product sheets. For ceramics, this is generally the
Vickers or Knoop hardness. When a very low test load
is applied to a ceramic, the measured hardness is
usually very high. With an increase in load, however,
the measured hardness decreases [1—6] as illustrated
in Fig. 1a. At higher indentation loads, hardness—load
curves for ceramic specimens flatten out and hardness
becomes constant. Despite the well known depend-
ency of hardness on load, however, published hard-
ness values seldom include the load at which the
hardness was assessed. A full hardness characteriza-
tion by a hardness—load curve is uncommon in ceram-
ics. Furthermore, there are no relationships or tables
for converting different hardness test values, such as
Knoop to Vickers hardness, or vice-versa. Hardness
comparisons of ceramic materials must be approached
with knowledgeable caution.

The specification of a single, universal test load for
Vickers measurements (e.g. as in a standard) has
a number of drawbacks including that cracking may
or may not manifest itself at the designated load in
different ceramic materials. It may be misleading to
compare the hardness of one material that has cracked
to the hardness of another that has not cracked. The
cracking may influence the hardness in the former
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Figure 1 Hardness versus load: (a) shows hardness either constant
(n"2) or decreasing with load (n(2), and (b) shows hardness with
an abrupt transition to a constant value at (P

#
, H

#
).

material, or in the extreme, may make the indent
unreadable. (For example, 9.8N Vickers indents in
a silicon carbide will be very different than those in
a zirconia.) The Knoop test, with a much shallower
indentation, is less susceptible to cracking problems
and thus has a broader range at which readable hard-
ness impressions are possible. Generalizations con-
cerning comparisons of Knoop hardness to Vickers
hardness are difficult due to the different propensities
for cracking and different sensitivities to load and
indenter geometry.

Plots of hardness versus load data are sometimes
fitted to the Meyer law, which was originally used to
determine the work-hardening capacity of metals in
Brinell hardness tests [5, 7]. Although there exists no
theoretical basis for applying the Meyer law to Knoop
and Vickers generated hardness—load curves [8],
a good empirical fit can sometimes be attained by
doing so. The Meyer law is

P " Cdn (2)

where P is the load, C is a constant, d is the measured
impression size, and n is the Meyer or logarithmic
index denoting the degree of curvature for the hard-
ness—load relationship. By combining Equations
1 and 2, it can be seen that if n"2, hardness does not
change with load, and a hardness—load graph is flat. If
n(2, then hardness decreases with increasing load,

and as Sargent [6] has pointed out, the constant C is
a material parameter with the strange units of
Nm~n~1. Fig. 1a illustrates the hardness—load curves
for n"2 and n(2.

The hardness—load curve itself, or sometimes the
Meyer index that characterizes the curve, is often
referred to as the indentation size effect, or ISE. The
ISE has also come to denote the general tendency for
hardness to vary with load. This effect is especially
apparent in hard, brittle ceramics at low indentation
loads, where n is significantly less than 2.

Close scrutiny of Vickers hardness—load curves for
ceramics, such as those shown in [3, 4, 9—17], suggests
a discrete transition point may exist where hardness
changes from being load dependent to load indepen-
dent as illustrated in Fig. 1b. We contend that this
transition point, which is nearly always overlooked, is
intimately associated with the onset of extensive frac-
ture in the vicinity of the indentation. The verification
and interpretation of this transition is the primary
focus of this paper.

Equation 2 does not predict a transition point to
constant hardness, and the common practice of
forcing the Meyer law to data masks such a point.
Many ceramics are not well modelled by the
Meyer analysis. This is especially the case for Vickers
hardness, which fits the Meyer model less well than
Knoop hardness [18]. Experimental error, plotting
methodology and the simple expectation of a
continuous curve further contribute to the lack of
interest in discerning the existence of a discrete
transition point.

The inadequacy of the Meyer analysis has
prompted alternative attempts to achieve improved
curve fits to hardness—load or hardness—indentation
size data. Bückle [19] and Mitsche [20] suggested
a power series expansion

P " a
0
#a

1
d#a

2
d2#2 a

n
dn (3)

where P is the load, d is the indentation diagonal
size, and a is a constant. A good fit to experi-
mental data is often obtained utilizing only two of the
power series terms. This results in a formula that
Fröhlich et al. [21] and Li and Bradt [2] ascribe to
Bernhardt [22]

P " a
1
d#a

2
d2 (4)

(Bernhardt did not write an equation in this form
explicitly, but it is clear from his text that this was the
intent. Note also that the depth of the indenter pen-
etration, l, is proportional to d, and thus Equation
4 can also be expressed as P"b

1
l#b

2
l2.)

The a
0

term corresponds to a load threshold for an
indenter to make a permanent indentation, and has
such a low magnitude that it can be ignored in most
instances. This simple, yet versatile relationship be-
tween load and indentation size can be re-expressed
several ways. It can be rewritten in units of hardness
by dividing by d2

P

d2
"

a
1
d
#a

2
(5)
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Figure 2 Hardness versus diagonal size: (a) shows behaviour
modelled by Equation 6. The indentation size effect comes from the
a@
1
/d term. (b) Shows hardness with a transition to constant hardness

at a critical indentation size.

or, using the definition of hardness, Equation 1

H "

a@
1
d
#a@

2
(6)

where the prime indicates that the indenter constant
(1.8544 for a Vickers indenter) is incorporated into the
constants a

1
and a

2
. Equation 6 is illustrated in

Fig. 2a.
Comparing Equations 2 and 4, it can be seen that

the second term on the right-hand side of Equation 4,
a
2
d2, is identical to the right-hand side of Equation 2,

but only if n" 2, which corresponds to the hardness
being load independent. Thus, in Equations 4 —6, the
terms with a

2
or a@

2
do not contribute to an ISE. It is

the first term on the right-hand side of these equations,
or the term with a

1
or a@

1
, that determines the amount

of curvature or magnitude of the ISE as shown in
Fig. 2a.

The relationship between indentation load and in-
dentation diagonal size, Equation 4, alternatively may
be re-expressed as an energy balance by multiplying
both sides by d

Pd " a
1
d2#a

2
d3 (7)

As will be discussed later, the term Pd may be related
to the external work done by the indenter. Fröhlich
et al. [21] and Bernhardt [22] relate the a

1
d2 term to

the energy consumed in creating new surfaces (in-
dentation facets and microfracture). Hirao and
Tomozawa [23] have also attempted to correlate sur-
face energy processes to this term, while Li and
coworkers [24, 25] have related this term to frictional
and elastic contributions in a proportional specimen
resistance (PSR) model. Swain and Wittling [26] at-
tributed the ISE to the a

1
d2 term and argued that

median cracks under Knoop indentations were the
source of the ISE.

The a
2
d3 term, on the other hand, is thought to be

the ‘‘work of permanent deformation’’ [21] or the
‘‘volume energy of deformation’’ [25]. The analogous
a@
2

constant is related to the ‘‘crack free hardness,
(L2VH) ’’ by Fröhlich et al. [21] and Frischat [27], the
‘‘load-independent hardness’’ by Li and Bradt [24] or
represents the ‘‘true hardness’’ by Hirao and To-
mozawa [23].

Equations 4—6 do not predict a specific, discrete
transition point to constant hardness. In either the
energy or PSR models, the apparent fit of the data to
these equations fosters the tendency to overlook the
existence of an abrupt transition point.

Other mechanisms proposed to explain the ISE are
elastic recovery [28, 29], surface damage due to pol-
ishing [30], dislocation activity [31] and strain rate
effects [1]. As noted by Li et al. [25], the different
mechanisms seem to work for specific situations. It is
likely that all these mechanisms play a role in ISE, for
they are not mutually exclusive and material and test
characteristics may affect the order and degree of
mechanism dominance.

1.2. Hardness and fracture
A more general approach is to regard the ISE as
a total indentation response with both deformation
and fracture processes active. Deformation is the con-
trolling characteristic at low loads, and fracture grad-
ually becomes relevant at higher loads. There has been
considerable work in recent years on cracks associated
with hardness impressions [30, 32—37]. Most of these
studies have focused on the micromechanics of frac-
ture and are concerned with the formation and propa-
gation of specific, moderate-sized cracks beneath in-
dentations. Vickers indentations have been widely
used for these studies, although there has been similar
research employing Knoop indentations [11, 37, 38].
In a series of papers, Lawn and coworkers [32, 39— 42]
showed how indentations change from deformation
dominated behaviour to fracture dominated behav-
iour above threshold load levels. A number of crack
types (median, radial, lateral, cone, etc.) are possible
depending upon the indenter sharpness and geometry,
and each has associated with it a different functional
relationship between load, hardness, fracture tough-
ness and crack size [41, 43, 44]. Extrapolation of load
and crack size data (from high to low load) is used to
determine fracture initiation and propagation para-
meters in these idealized crack systems. Below a load
threshold, the cracks will not form. A different load
threshold, or fracture transition point, is thus defined
for each type of crack.
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We suggest that a transition to fracture orientated
behaviour may not necessarily be heralded by the
initiation of an idealized, specific type of crack, or even
by clearly delineated cracks at all. A general damage
zone with non-specific microcracking, for example,
may develop in some materials; other materials may
be prone to extensive, but hidden, subsurface cracking.
Even the appearance of classical surface cracking pat-
terns may not always signify the true extent of the
fracture response to the applied load.

While difficult to identify via surface crack inspec-
tion, we propose that the onset of brittle, fracture
dominated behaviour may be determined by an alter-
nate method, involving a transition point in hard-
ness—load curves. The previously cited fracture mech-
anics studies have thus far emphasized the effect of
load and hardness on fracture processes and fracture
toughness. They have not considered in detail the
reverse effect of fracture on hardness.

1.3. Hardness: an energy balance model
A general energy balance for a Vickers indentation
process may be formulated in which the external work
applied by the indenter is consumed in deformation
and fracture processes in a material. The work of
indentation is converted into a strain energy compon-
ent, proportional to the Vickers pyramid volume, and
a surface energy component, proportional to the
Vickers pyramid contact area, and created fracture
surface area.

We begin with Equation 7, which is an energy
balance for the indentation process consistent with
a dimensional analysis. Pd is proportional to the work
of indentation which is : Pdl, where P is the applied
load and l is the penetration depth. Graphs of load
versus penetration depth during indentations of dense
ceramics [26, 27, 45—47] indicate the curves are sim-
ilar in shape, and the work of indentation is propor-
tional to Pl and thus also to Pd. (The proportionality
constants are included in a

1
and a

2
. The elastic com-

ponent of the indentation process may be either in-
cluded or excluded in the energy balance depending
upon whether the indentation depth or diagonal sizes
are measured with the indenter in contact under full
load, or after indenter removal. For the remainder of
this paper, the depths or diagonal sizes are the perma-
nent values and do not include the elastic component.)
Note that the total work of indentation is propor-
tional to Hd3, and the work per unit volume is propor-
tional to H. [H"P/(indent area)"Pl/(indent
area]l)"work done by indenter/(3]volume of in-
dentation) since the volume of the pyramidal impres-
sion is 1

3
base area]height.] The hardness, therefore,

is a measure of the specific work of indentation.
The second term in Equation 7, the a

1
d2 term,

represents energy expended in the material in the
process of creating new surface area. Among the con-
tributions to the surface energy is the new area formed
by the four facets of the pyramidal indenter. This
component, which is proportional to the thermodyn-
amic free surface energy, c

4
, is quite small. This is

shown by considering the indentation contact surface

area of a Vickers indenter, (1/1.8544)d2. The surface it
replaces is the flat specimen area that existed before
the indent, (1/2)d2, and thus the change in indentation
surface area is only (1/1.8544)d2!(1/2)d2"
0.0393d2. Frictional effects also depend upon the in-
denter contact area and mounting evidence suggests
this contribution to be higher than previously recog-
nized [24, 25]. If fracture occurs, fracture surface area
creation will also consume some of the work of inden-
tation and this energy contribution will be propor-
tional to the fracture surface energy, c

&
. Microcracks

and damage zones are frequently discernible through-
out the hardness testing range of a ceramic specimen,
even at very low loads [9, 27, 48—50]. Although
marked fracture may not be apparent until higher
loads are applied, even relatively small microcracks at
the corners of a Vickers impression can account for
a significant increase in new surface area compared
with the new surface area created by the impression
itself. Microfissuring directly underneath and along-
side the indenter also appears to be extensive [51].
The energy model assumes that the new crack area is
proportional to the surface area of the Vickers impres-
sion. (Some of the microfracturing will be in the plasti-
cally deformed volume directly below the indentation,
and in this case, a portion of the fracture energy would
be included in the volume term, a

2
d3.)

The third term in Equation 7 represents the volume
energy component, a

2
d3, which includes the material

deformation resulting from the indentation, and may
be expressed in terms of a specific strain energy times
the deformation volume. a

2
presumably is propor-

tional to the yield stress, r
:
. The energy consumed in

plastically deforming the material is related to the
stresses and strains in the deformation zone, but these
are triaxial and complicated to analyse in detail.

1.3.1. Energy ratio at low load, d(dc

Starting at low applied loads, the indentation work is
absorbed by volume deformation processes (the a

2
d3

term) and by modest surface energy absorption pro-
cesses (the a

1
d2 term). The existence of the latter pre-

vents the formation of indentations as large as they
otherwise would be if all energy were consumed in the
volume deformation.

As load is increased, the indentations become larger
and more energy is absorbed via volume deformation
and crack propagation, i.e. an increasing volume of
material is deformed and an increasing crack surface
area is generated. The former increases more rapidly
than the latter, however, due to the different depend-
encies (cubed versus squared power) upon indentation
size. The hardness continues to decrease with load
until a transition to constant hardness is reached. At
this point, the ratio of surface energy consumption to
total indentation work reaches a critical ratio, b

#

b
#

"

a
1
d2
#

P
#
d
#

(8)

or:

b
#
"

(a
1
/d

#
)

(P
#
/d2

#
)

"

(a@
1
/d

#
)

H
#

(9)
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where H
#

denotes the hardness of the material at d
#
,

and as before, the indenter diamond constant is in-
corporated in a@

1
. H

#
, P

#
and d

#
correspond to the

hardness, load and diagonal sizes at the transi-
tion point to constant hardness as shown in Figs 1b
and 2b.

Equation 9 illustrates that b
#

is not only a critical
energy ratio, but is a critical hardness ratio as well. It
represents the ratio of the hardness component that is
involved with surface energy consumption processes
to the total hardness. If we assume that a

1
is propor-

tional to the thermodynamic surface free energy, c
4
,

and the effective fracture surface energy, c
&
, and that

these are proportional, then

b
#
"

A(c
&
/d

#
)

H
#

(10)

where A is a constant. For plane strain

K
I#

" C
2Ec

&
(1!m2)D

1@2
(11)

where E is Young’s modulus, m is Poisson’s ratio, and
K

I#
is the fracture toughness. Substituting in Equation

10

b
#
" A@

(K2
I#
/d

#
)

H
#
E

(12)

where A@ is a new constant incorporating A, the factor
of two and (1!m2). Rearranging

d
#
"

A@
b
#
A

K2
I#

H
#
E B (13)

and inverting

1

d
#

"

b
#

A@ A
H

#
E

K2
I#
B (14)

The combination of material parameters in the
brackets is a new parameter that we define as brittle-
ness, B

B , A
H

#
E

K2
I#
B (15)

and which will be discussed in detail in the following
sections. We hypothesize that the hardness transition
point corresponds to the onset of extensive cracking
around and beneath the indentation. The onset of
such cracking occurs at a critical energy balance in the
system. The indentation system may be described as
saturated, i.e. it has reached its maximum capacity to
convert indentation work into surface energy by
microcracking or microfissuring in the immediate vi-
cinity of the indentation. The extensive or new
cracking that commences at the transition point
may or may not necessarily correspond to one of
the classical crack patterns (radial, median or lat-
eral) in the fracture mechanics models described pre-
viously. Gross cracking and crushing are typical at
indentation loads where hardness becomes load inde-
pendent [13, 44, 52].

1.3.2. Energy ratio at high loads, d'dc

At indentation loads and indentation sizes above the
transition point, a new surface energy absorption term
comes into play. In order to maintain a constant
hardness at d'd

#
, the new mechanism of energy

absorption must operate to offset the decrease in mag-
nitude of the a@

1
/d term as the indentation load and

diagonal size increase.
Fig. 2a shows behaviour according to Equation 6,

indicating that at large d values a@
1
/d decreases asymp-

totically towards a@
2
, effectively vanishing. However, as

hardness is load- independent and therefore constant
at d'd

#
, a new constant magnitude surface energy

term, a@
1
/d

#
has to become operative at H"H

#
, which

is additive to the load independent hardness compon-
ent, a@

2
, as illustrated in Fig. 2b. (The a@

1
/d

#
term either

replaces the a
1
/d term of Equation 6, or gradually

phases in at d'd
#

to offset the continued diminish-
ment of a

1
/d as discussed in Appendix I.) Thus, Equa-

tion 6 is modified to

H " a@
2
#

a@
1

d
#

(16)

Multiplying both sides by d3 leads to

Pd " a
2
d3#

a
1

d
#

d3 " a
2
d3#a

4
d3 (17)

where a
4
" a

1
/d

#
. The energy (and hardness) ratio

b for d'd
#
is thus

b
d'd#

"

(a
1
/d

#
)d3

Pd
"

(a
1
/d

#
)

(P/d2)
"

(a@
1
/d

#
)

H
#

(18)

where we note that P/d2 is constant (H"H
#
) for

d*d
#
. This b ratio is the same as that at the critical

transition point, d" d
#
. The difference, however, is

that as the indentation load and diagonal size in-
crease, the term in the energy balance that pertains to
fracture, a

4
d3, now increases as the cube of the inden-

tation size and not as the square. (For d(d
#
, the total

fracture surface area created was assumed to be pro-
portional to the indentation diagonal size squared, or
indenter contact area. For d'd

#
, the fracture surface

area expands faster than the indentation contact area.)
This term includes not only the fracture surface en-
ergy, c

&
, but geometrical factors (the number of cracks,

their size and their shape), and the actual surface area
of the cracks. In other words, the extent of post-
threshold cracking dramatically increases.

The existence of a constant hardness transition
point can be investigated experimentally. Although
numerous experiments have already been reported in
the literature in order to evaluate the ISE constants of
the Meyer law, Equation 2, or the alternative Equa-
tions 4 or 6, none of these studies have been specifi-
cally orientated towards determining an abrupt
transition to constant hardness.

2. Experimental procedure
Seven well characterized dense polycrystalline cer-
amics exhibiting a measurable ISE were chosen to
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TABLE I Materials tested!,"

Material# q E K
I#
$ Vickers d

#
P
#

B
(Mgm~3) (GPa) (MPam~1@2) hardness (lm) (N) (lm~1)

H»
#

(GPa)

Al
2
O

3
AD999, Coors sintered [55, 56] 3.96 386 4.0 18.2 45.9 20.7 439

(SCF, other)
Pyroceram 9603, Corning [53—56] 2.64 134 2.4 6.8 125.0 57.3 157

(CM—DCB)
a-SiC, carborundum sintered [55—57] 3.11 410 3.0 22.6 20.2 5.0 1023

(SCF)
Si

3
N

4
NC132, Norton hot pressed [55—57] 3.23 320 4.6 15.4 78.9 51.7 233

(SCF, other)
Si

3
N

4
NBD200, Norton hot isopressed [55, 56] 3.16 320 5.4 14.9 120.0 116.0 163

(SCF)
Si

3
N

4
NT154, Norton hot isopressed [55, 56] 3.23 315 5.8 14.9 114.0 105.0 140

(SCF)
a-SiC, carborundum sintered [12, 58] 3.16 430 3.0 27.0 14.5 3.1 1290

(CN, SCF, other)
ALON, Army Research Laboratory 3.61 320 2.75 14.6 31.1 7.6 618
aluminum oxynitride spinel [16] (SB—CN, NAT, other)

!Certain commercial equipment, instruments or materials are identified in this paper in order to specify the experimental procedure
adequately. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor
does it imply that the materials are necessarily the best for the purpose.
"The uncertainties for the parameters vary somewhat with material. Expressed as the coefficient of variation in per cent, the uncertainties are
approximately: E,$1%; K

I#
,$5%; H»

#
,$1.5%; d

#
, $5%; P

#
, $10%; and B, $10%.

#The source references for the q, E and K
I#

data are shown in parentheses.
$The notations in parentheses are the test method: (CN) chevron notch, (SB—CN) short bar—chevron notch, (SCF) surface crack in flexure
(controlled surface flaw), (CM—DCB) constant moment double cantilever beam, (NAT) fractography, natural flaws. (Other): denotes original
reference has corroborative data by other methods.

determine whether hardness does reach a plateau and
whether the transition point correlated to a critical
energy ratio and the material constants in Equations
13 and 14. The materials are listed in Table I. One of
the reasons these materials were chosen was that the
fracture toughnesses were very well characterized.
Hardness—load curves for the first six entries were
expressly performed for this study. Data for density, q,
Young’s modulus, E, and fracture toughness, K

I#
, are

taken from the listed sources. The second entry for
sintered silicon carbide uses data entirely from Li et al.
[12] and Ghosh et al. [58]. The data are listed separ-
ately for reasons that will be discussed below. All data,
including hardness, for the aluminum oxynitride
spinel are from [16].

These materials have a range of material properties
and, with the possible exception of the NT 154, are
known to have no (or negligible) R-curve behaviour.
They also were sufficiently fine grained to limit grain-
size effects in the ISE, and avoid excessive scatter in
the data at small indentation impressions. The mater-
ials are also relatively impervious to ambient environ-
mental effects. (Alumina has been shown to exhibit
a noticeable environmental effect only at loads below
100 g in Vickers tests [59]).

Specimens were polished to an optical finish
(0.25lm diamond). The polished specimens were
tested on a Tukon Model 300 hardness testing ma-
chine with a Vickers indenter for loads up to 98 N.
The Tukon 300 was equipped with a digital micro-
hardness display unit with an electronic filar eyepiece
enabling Vickers diagonals to be measured with a pre-
cision of better than 0.5lm. Loads exceeding 98 N
were applied with a Zwick 3 212 001/00 hardness tes-

ter, with the resulting indentations measured on the
Tukon 300 optical system for consistency. Duplicate
indentations were made using both hardness machines
at loads of 49 and 98 N in order to ensure there was no
systematic bias between the machines. A minimum of
five hardness readings (but often many more) were
taken at each load, with the unreadable indentations
at high loads redone until acceptable impressions were
obtained. Considerable care was taken in all aspects of
measuring the Vickers diagonals. This point cannot be
underestimated, because if proper care is not taken,
important ISE or transition point behaviour may be
obscured or lost by data scatter [60—62]. For example,
Clinton et al. [63] illustrated how different observers
obtained different hardness—load curves for the identi-
cal alumina in a single laboratory with the same in-
strument. One observer’s results showed a clear pla-
teau, the other observer’s results illustrated a different
trend that was attributed to small errors of measure-
ment. Beyond the hardness transition point, and on
the constant hardness plateau, cracking around the
indentation can severely interfere with or obviate
measurements of the indentation size. At high loads in
some of the materials tested it was necessary to make
many indentations until a few measurable indenta-
tions were obtained. It was also prudent to measure
the indentations as soon as possible after indenta-
tion before any spalling or time dependent cracking
occurred. While simple in concept, hardness testing
is fraught with experimental pitfalls that often are
not appreciated. Hardness measurements are very sen-
sitive to machine vibrations, optical microscope lim-
itations (resolution limits, illumination conditions,
crosshair technique, etc.) and operator subjectivity
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and skill. A recent round robin project [60] on Vickers
hardness of two aluminas at 9.8 N demonstrated that
laboratory to laboratory variations in mean hardness
of $10—15% were typical (and in some cases as much
as 20%). Testing machine calibration should be
checked frequently and use of certified reference ma-
terials is highly recommended [61, 62].

The hardness—load data for one of the materials,
NC132 Si

3
N

4
, were independently determined by

both authors in this study in order to confirm the
constant hardness transition point and the repeatabil-
ity of the experiments.

Hardness values were calculated from the standard
Vickers formula

H» " 1.8544 P/d2 (19)

where H» is the Vickers hardness, P the applied load
and d the measured diagonal. The conventional defini-
tion of Vickers hardness, H», is applied load divided
by contact area. Every official standard test method
and every Vickers standard hardness (certified) refer-
ence material in the world use this definition, as do
most textbooks on hardness testing. The constant
hardness transition points were determined by inspec-
tion of the hardness—load graphs (plotted on linear,
not logarithmic axes). Separate linear regression ana-
lyses of the data segments for d(d

#
and d'd

#
were

made to obtain P
#
, the critical transition point load.

The transition diagonal, d
#
, was then calculated from

Equation 1 using H"H
#
.

3. Results
The hardness—load data for the six tested materials
were first plotted on linear hardness—load axes, com-
prising Figs 3—8. The error bars are plus and minus
one standard deviation in each case. All six materials
exhibited distinct hardness transitions and plateaus.
The ISE at low loads appears nearly linear in all of
these plots prior to a constant hardness transition.
Table I lists the constant hardness and the Vickers
diagonals at which the constant hardness transitions
occur for the five materials.

Figure 3 Hardness as a function of load for AD999 alumina.

Figure 4 Hardness as a function of load for Pyroceram 9603.

Figure 5 Hardness as a function of load for sintered a-SiC with
a density of 3.11 Mgm~3.

Figure 6 Hardness as a function of load for NC132 silicon nitride.

Equation 14 predicts 1/d
#
should be proportional to

B, and the experimental data, plotted in Fig. 9, con-
firm that there is a correlation for all materials over
a broad range of diagonal size and material brittle-
ness. The correlation supports the general form of the
energy balance model for indentation. Of particular
interest is the intersection of the linear regression line
very near the origin, indicating a material with a
brittleness value of zero would exhibit a fracture re-
sponse at an infinite Vickers diagonal. The slope of the
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Figure 7 Hardness as a function of load for NBD200 silicon nitride.

Figure 8 Hardness as a function of load for NT154 silicon nitride:
(a) shows data on linear axes from the present study with uncertain-
ty bars of one standard deviation, and (b) shows the same hardness
(]) as well as data (s) from [9] superimposed. The dashed lines
cover the same data range in both (a) and (b).

line, which is dimensionless, is 5.13]10~5, and is
a manifestation of the critical energy ratio, b

#
, and the

geometrical constants incorporated in A@ in Equation
14. The geometrical constants include the total frac-
ture surface area, but this would be difficult to quan-
tify independently.

Fig. 10 shows indentations in the hot-pressed silicon
nitride at loads below and above the transition point.
There are no obvious differences in the surface ap-
pearances of the indentations for this material at loads

Figure 9 Graph of the reciprocal of the Vickers diagonal size at
the transition point versus brittleness, B. The linear regression
line passes through the origin, indicating that a material of zero
brittleness will exhibit fracture behaviour at an infinite indentation
size.

Figure 10 Indentations in NC 132 hot-pressed silicon nitride.
Photos were taken with a stereo optical microscope with low-
angle incident lighting and a severe specimen tilt so as to accen-
tuate surface detail. The magnification markers are approximate
only. (a) Shows rows of indents at different loads, from left to right:
9.8, 19.6, 29.4, 49, 98 and 73.5 N. (b) Shows a closeup of a 98 N
indentation.

in the vicinity of P
#
. Small cracks prior to the

transition were noted in all the materials except the
sintered silicon carbide, in which cracking was first
observed at the transition point. Above P

#
, however,

surface cracking increased noticeably with load. This
effect was more dramatic in materials with high
brittleness (B'200 lm~1), where different types of
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cracks and surface damage rendered most indents
unreadable beyond the highest loads shown in the
corresponding figures. In these materials, reason-
able diagonal measurements could be obtained for
fewer than 25% of the indents made at the highest
loads.

In most materials, the presence of fine cracks did
not unduly obscure the indentation corners. At the
highest loads, where cracking was more pronounced,
the existence of displaced grains and lateral cracks
required more judgement in rejecting indents and esti-
mating the indentation sizes. Although the measured
size variations were greater at the higher loads, this
was not necessarily reflected in higher data scatter,
because the greater overall dimensions of the indenta-
tions compensated for this scatter.

4. Discussion
Other investigators have realized that cracking is inti-
mately involved with hardness measurements. Li et al.
[12] noted that extensive cracking was associated
with their hardness becoming load independent in
sintered silicon carbide. They argued that the cracking
is a process that substitutes for and limits the flow
processes and thus interferes with attempts to measure
a true hardness. Berriche and Holt [9] argued that the
ISE was directly connected with cracking they meas-
ured at loads as low as 1 N in a series of silicon
nitrides. Strong new corroborative evidence for the
connection between the hardness transition and
cracking was recently reported by Yurkov and Bradt
[48] who used acoustic emission to monitor the in-
dentation of five SiALON ceramics over a broad in-
dentation load range. Their hardness—load curves did
reach constant hardness plateaus, but at different
magnitudes for the five materials. The fracture tough-
ness ranged from 3.9 to 5.7MPam~1@2 for the differ-
ent compositions, and significant acoustic emission
activity was first detected at the point where the
plateaus were reached. Their graphs of P/d versus
d also showed slight bends, presumably occurring at
the transition points.

The sintered silicon carbide data warrant further
explanation. There are two data points for this mater-
ial in Fig. 9 and two separate data listings in Table I,
corresponding to the data in our study and that re-
ported by Li et al. [12]. The fracture toughness values
were reported to be 3.0MPa m~1@2 in each study.
Each team used the same test method (surface crack in
flexure or controlled surface flaw). Ghosh et al. [58], in
an extension of the Li et al. [12] study, also reported
corroborative data from chevron notch tests and
concluded the toughness for this material was
3.0MPam~1@2 and that it exhibited flat R-curve
behaviour. The materials in the two studies had
different densities, however. The higher density
material (3.16Mgm~3, 98% dense) used by Li et al.
was harder and stiffer than the lower density material
(3.11Mg m~3, 96% dense) we used in the present
work. The brittleness parameter, B, is therefore higher
for the higher density material, and the hardness
transition point, d

#
, is smaller as shown in Fig. 9.

Seshadri et al. [64] also illustrated a load—hardness
curve with a plateau for another batch of this material
but there were insufficient data at the low loads to
determine an exact transition point.

The hardness transition has similarities to other size
transition correlations for fracture discussed in [32,
65—68]. In each case, the energy available from volume
strain energy is balanced with the surface energy
needed to propagate a crack. The strain energy scales
with the volume of the body, whereas the energy
required for crack extension increases with crack area.
This gives rise to a cube/square size scaling that leads
to a critical dimension or length. The critical length
could be a specimen or crack size and determines
whether a body behaves elastically (brittle), elas-
tic—plastically or plastically (ductile). Puttick [65]
stated: ‘‘2 the critical length is proportional to the
ratio of a surface free energy density to a volume free
energy density’’. Critical sizes for these transitions can
be devised for Hertzian contact problems [65], blunt
or sharp indentation loadings [35, 66], notched or
precracked tensile specimens [65, 67], or the peeling of
metal—epoxy joints [67].

In our model of the hardness—load behaviour for
ceramics, at low indentation loads energy is expended
in volume strain energy deformation and surface en-
ergy processes. As the applied indentation load and
the corresponding work of indentation are increased,
the volume and surface terms rapidly increase with the
cube/square dependencies until a transition occurs.
New area in the form of escalated crack growth and/or
the initiation of new types of cracking commences at
the constant hardness transition point. Changes in the
magnitude of frictional effects also result from
cube/square scaling, but rapidly decrease in signifi-
cance as the relative amount of new Vickers indenta-
tion surface area decreases with increasing indentation
load. Extensive cracking following the constant hard-
ness transition would also alleviate some of the fric-
tional effects.

The surface energy consumed in cracking (H
#
!a@

2
in Fig. 2) is relatively small in magnitude: i.e. the
surface energy contribution to hardness due to the
cracks, a@

1
/d

#
, must be very small compared to the

volume energy contribution, a@
2
. This is especially

true if the transition to constant hardness and frac-
ture orientated behaviour does not occur until
large loads are applied, with resulting large Vickers
impressions, as for less brittle materials. Eventually,
however, even the most ductile material will exhibit
a brittle fracture response when the load is high
enough [67]. For more brittle materials, with a frac-
ture response at smaller Vickers diagonals, a brittle
transition should be somewhat more noticeable; i.e.
(H

#
!a@

2
) in Fig. 2 is larger. Fig. 5 for the sintered

silicon carbide illustrates this. As small as the surface
energy contribution may be, it is quite significant in
determining the fracture parameters associated with
brittle failure, and should be highlighted rather than
ignored.

The materials evaluated in this study had hardness
plateaus, but there may have been instances where
insufficient energy was absorbed in the post-transition
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region for such a plateau to occur. In such cases
a change in the slope of hardness—load or hard-
ness—diagonal sizes may occur once the massive crack-
ing phase commences. One possible empirical model
for this is included as Appendix I.

As an alternative to the linear hardness versus load
graphs that we have presented, we reanalysed our
results by the conventional methods to evaluate the
ISE parameters to determine whether these methods
could discern the transition point. Following the pro-
cedures of Fröhlich et al. [21], Frischat [27] and Li
and coworkers [24, 25] P/d was plotted against d in
accordance with Equation 4 with both sides divided
by d. The line on such a plot will have a slope of a

2
and

a y-intercept of a
1
. Fig. 11 shows such a graph for the

alumina, utilizing the same data as given in Fig. 3.
A very good fit is obtained with a straight line with
a correlation coefficient of 0.9996. A closer examina-
tion of Fig. 11 reveals that there is a subtle bend in the
line at the constant hardness transition point of 46 lm
(from Table I and Fig. 3). This very slight bend at the
constant hardness transition point is barely perceiv-
able in all similar graphs for the six materials in this
study. Alternately, log—log graphs of P verus d (or vice
versa) are used to determine the Meyer constant, n, in
Equation 2. Lankford and Davidson [49] showed
a graph of log-d versus log-P for the sintered a-SiC
that completely masked the transition point in the
middle of their data set. Clinton and Morrell [4]
showed data for several aluminas that clearly illus-
trated a kink in their d versus P graph at the point
where a transition to constant hardness occurred.
Gahm [69] noted that a kink in P versus d curves was
related to the first observed cracking in two glasses.
Our point is that the conventional analyses of the ISE
tend to overlook the existence of the transition point
in the hardness curves.

Furthermore, the analysis to obtain the a
1

and
a
2

constants for Equation 4 should only use the P—d
data up to the transition point and not beyond. This is
because the slopes of the P/d versus d plots for d(d

#
,

are all smaller than the slopes for d'd
#
.

Figs 12 and 13 illustrate the shortcomings of the
conventional ISE analysis very clearly. Equation 6 is

Figure 11 P/d versus d for AD999 alumina, using the same data in
Fig. 3. The transition occurs at d"46 lm.

Figure 12 Hardness as a function of diagonal size for AD-999
alumina: (— — —) experimental data trend with a transition point,
(——) best fit using Equation 6.

Figure 13 Hardness as a function of diagonal size for NC 132 silicon
nitride: (— — —) experimental data trend with a transition point,
(——) best fit using Equation 6.

graphed in these figures utilizing constants a@
1

and a@
2

determined from P/d versus d graphs for
alumina and the hot-pressed silicon nitride, respec-
tively. It is obvious that curves miss the abrupt
transition to a constant hardness. This tendency
for curve-fitting exercises to mask the actual hard-
ness response of the material is exacerbated if the
hardness data are plotted logarithmically, or are ‘‘nor-
malized’’ or otherwise modified in a such a manner so
as to inadvertently conceal a transition to constant
hardness.

The hardness data curves in Figs 3—8 prior to the
transition point are more linear than anticipated.
They should exhibit some curvature due to the a

1
/d or

a@
1
/d terms, but this curvature might be very slight for

loads that are already past the bend in the ISE hyper-
bola, but below the transition point to constant hard-
ness. In most of these figures, the data collected are at
loads well above the low load, high ISE portion of the
curves (which usually are below 10 N). The cold-rolled
iron in [25] also exhibits a more linear response when
frictional effects are alleviated. The hardness data in
[10, 11, 17] follow a linear trend as well, in spite of the
curves superimposed by the respective authors on
their data. This suggests that the linear response is real
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and not unusual. Possible contributions to this
effect are elastic recovery and material buildup
around the edges of the indentations, such that a
non-proportional relationship results between the
Vickers diagonal and the penetration depth. Fig. 10
illustrates such a buildup. A possible contribution
to the linearity of the hardness data is non-propor-
tional crack growth prior to the brittle transition.
These effects are not mutually exclusive and may be
cumulative.

The generality of the transition point to constant
hardness has yet to be confirmed for all brittle mater-
ials. The brittleness of most zirconias is so low
(B(100 lm~1) that transition points would not oc-
cur until indents were hundreds of micrometres in size,
at very high indentation loads. This study has focused
on dense polycrystalline ceramics. It is unclear
whether a hardness transition point also occurs for
porous materials because densification or crushing
may be dominant. Berriche and Holt [9], however,
reported data for porous silicon nitrides where such
a transition was evident. Other complications may
exist for glasses whereby structural densification is an
important part of the indentation response, or for
materials that undergo strain-induced phase trans-
formations. For example, Ritter et al. [52] presented
Vickers hardness versus load data for soda-lime glass
that showed a transition point to constant hardness at
approximately 5 N or a diagonal size of about 44 lm.
This is somewhat larger than the expected 33 lm from
Fig. 9 for this material, which has a B of
&6]108 lm~1. Densification or phase transforma-
tions would contribute to the volume energy absorp-
tion terms in the energy balance, and could retard the
onset of extensive cracking. Critical transition points
and the b

#
ratio may be different for these materials

compared with the dense polycrystalline ceramics
evaluated in this study. Alternate classes of materials
may be represented by different slopes or curves on
Fig. 9.

We conclude this section by noting that Knoop
indentations exhibit much less cracking than Vickers
indentations at the same load [12, 13, 48, 70]. Any
possible constant hardness threshold due to a change
in cracking scale may be suppressed until much higher
loads, and in any case, may not even be noticeable.
Knoop hardness—load curves gradually reach a con-
stant hardness at very high loads and the Knoop
plateau is usually lower than the Vickers plateau
values (e.g. [12]). Thibault and Nyquist [71] noted
that the onset of serious cracking led to a decrease in
the apparent Knoop hardness. This may have been
due in part to displacement of the indentation tips or
sides, or as Swain and Wittling [26] have recently
argued, the crack opening displacement under the
Knoop indentation leading to greater indenter pen-
etration.

4.1. Brittleness
Brittleness, B, has been defined here in terms of the
material’s hardness, Young’s modulus, and fracture

toughness, as

B ,

H
#
E

K2
I#

"

H
#

G
I#

"

H
#

2c
&

J

deformation energy per unit volume

fracture surface energy per unit area
(20)

where G
I#

is the critical strain energy release rate. As
noted previously, H

#
is not only hardness in units of

force per unit area, but is directly proportional to the
work per unit volume of deformation. The fracture
surface energy, c

&
, is the energy necessary to create

unit fracture surface area. Thus the brittleness, B,
compares deformation to fracture processes. A mater-
ial with a low B is more apt to deform than fracture,
and conversely, a material with a high B is more apt to
fracture. B increases with both hardness and stiffness,
and decreases rapidly with increasing fracture tough-
ness. Pyroceram, for example, has a relatively low
hardness and Young’s modulus compared with other
ceramics, but its low fracture toughness renders it
a B value similar to that for silicon nitride. The roles of
the respective components in B are not difficult to
appreciate. A material with a high H, when indented
with a penetrator, is more resistant to deformation
that would otherwise distribute the load and alleviate
the stress concentration. The concentrated stresses are
more apt to cause cracking. Similarly, a high Young’s
modulus means the material is also rigid and unable
to distribute the indentation forces, which should also
promote cracking. Conversely, a high fracture tough-
ness or fracture surface energy in the denominator
indicates a greater resistance to cracking. Materials
with a low K

I#
or c

&
will crack more readily.

The generic H
#
term in Equation 20 ideally should

include only deformation energy such as the a@
2

term,
but this requires data reduction and analysis. (The
plateau Knoop hardness, HK

#
, might be more suitable

because cracking is much reduced with Knoop inden-
tations, but much higher loads are needed to reach the
Knoop plateau.) It is more practical and convenient to
use H»

#
, the plateau Vickers hardness in tabulations

of B as we have done in this paper using Equation 15,
although H»

#
incorporates some fracture energy as

well as deformation energy. The fraction of the total
energy that is in the latter form is, however, small,
despite the importance of the fracture component to
the indentation response.

The Mode I fracture toughness (opening or tensile
mode) is used in our definition of B although we
acknowledge that Mode II (sliding) and Mode III
(tearing) loading may contribute to fracture. Mode II
loadings are certainly involved in the field underneath
an indentation. The extent of K

II#
and K

III#
contribu-

tions will depend to a great deal upon the local stress
states and, in any case, it is not unreasonable to
assume that K

II#
and K

III#
may scale in magnitude with

K
I#
.

From Equation 14, it can be seen that the brittle-
ness, B, is inversely proportional to the size of an
indentation needed to induce brittle behaviour that we
previously showed was related to the cube/square
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TABLE II Brittleness indices [the brittleness increases with an increase in the listed parameter, unless marked with an asterisk (*), which
denotes an inverse relationship]

Reference Parameter Comment

Irwin [75] K*
I#

Critical stress intensity factor, Mode I

Griffith [76] c*
&

Fracture surface energy c
&
"K2

I#
(1!m2)/2E (plane strain)

Irwin [75] G*
I#

Critical strain energy release rate, G
I#
"2c

&

Kelly et al. [77] r/s* Compares theoretical cleavage strength, r, to theoretical shear strength, s, in
single crystals

Rice and Thomson [78] lb/c
&

Shear modulus, l, times Burger’s vector, b, divided by fracture surface energy, c
&
.

Determines whether a crack in a single crystal is atomically sharp or blunt due to
dislocation generation when stress is applied

Gogosti [79, 80] X"(r2
6
/2E) :rde The area under the stress—strain curve up to failure if the material were

completely elastic, normalized by the actual area under the stress—strain curve to
failure, X is equal to 1 for linearly elastic brittle ceramics

Lawn et al. [40] H2/G
I#
E or H2/K2

I#
G

I#
is the strain energy release rate. When expressed in terms of E and K

I#
, this

index of brittleness is similar to the next index

Puttick [65] Ec
&
/r2*

:
or K2

I#
/r2*

:
r
:
is the yield stress, i.e. the ratio of the surface energy associated with fracture to

the volume strain energy
If r

:
is proportional to H (e.g. for a perfectly plastic material, H"3r

:
), then

Puttick’s index is the inverse of the Lawn [42] index listed above!

Lawn and Marshall [32, 39] H/K
I#

Vickers hardness divided by stress intensity. This is the square root of the index
listed above; developed for convenient comparison rather than a theoretical
basis

Mouginot [66] a
5
JEc

&
/H2*

[or JE2c
&
/H3]*

Brittleness is determined by the size, a
5
, of a flat (or spherical) punch needed to

induce brittle behaviour (Hertzian cone cracks) rather than plastic deformation

Quinn and Quinn
This paper

B"EH
#
/K2

I#
Ratio of indentation work (or work of deformation) to fracture energy; this can
be related to the onset of extensive fracture via a critical length

Sehgal et al. [81] c/d Ratio of crack length, c, to indent size, d, for Vickers indents at a specified load;
empirically related to H/K

I#

! In a footnote, Puttick credits Irwin (1958) for having first recognized the significance of the parameter Ec
&
/r2

:
particularly as it is a measure of

crack tip plasticity and governs the transition from plane stress to plane strain fracture, which is yet another size transition.

scaling phenomenon. This is analogous to a brittleness
measurement proposed by Mouginot [66] in which
brittleness is inversely proportional to the size of a ball
or punch needed to induce brittle behaviour. The
definitions are therefore quite similar. Lawn and Mar-
shall [32] similarly noted the size scaling and related it
to whether indentations at a given load were charac-
terized primarily by plastic deformation or by whether
fracture had commenced.

4.1.1. Other brittleness parameters
Brittleness in a general sense may have any one
of a number of meanings, and a variety of tech-
niques or parameters that have been proposed to
characterize brittleness are listed in Table II. Early
attempts to define brittleness were primarily con-
cerned with single crystals. Parameters were chosen
for theoretical relevance rather than possible practical
applications.

A variety of engineering definitions arose in connec-
tion with hardness testing. For example, in his book
on hardness, Mott [31] stated that the occurrence and
extent of cracking around indentations was a quantit-
ative inverse measure of brittleness. Lysaght [72]
stated that brittleness could be appraised by measur-
ing the first load to cause fracture in Knoop indenta-
tions. Softer glasses were much less brittle than harder

glasses. Bernhardt [22] defined brittleness as the in-
verse of the Vickers indent diagonal size that just
caused one crack to form on the average and showed
data for seven glasses. Thibault and Nyquist [71]
suggested that cracking around a Knoop indentation
could be classified by six classes at a given load and
that this could categorize brittleness. In a discussion of
that paper, Winchell [73] indicated that brittleness or
friability could be defined as the minimum load to
cause fracture or cracking consistently. Shuvalov [74]
proposed a very similar scheme to Thibault and
Nyquist’s.

The advent of fracture mechanics has led to new
materials parameters to characterize brittleness of
elastic bodies including fracture surface energy, c

&
,

from the Griffith model, and critical stress intensity
factor, K

I#
, or the critical strain energy release rate,

G
I#
. The first two of these are routinely characterized

today. K
I#

or c
&

alone are not always sufficient to
characterize the brittleness of a material completely,
however. The sintered silicon carbide in Table I illus-
trates this very well. Both silicon carbides were ob-
tained from the same source, but although they had
different densities, they possessed identical fracture
toughnesses. This is not surprising because this silicon
carbide fractures transgranularly. The small amount
of porosity (2 or 4% by volume for the two batches)
did not affect the fracture toughness. The brittleness of
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the two batches varied because E and H differed.
These latter parameters are much more sensitive to
the density difference.

Various combinations of hardness, stiffness, frac-
ture toughness and other parameters have been used
to indicate a degree of brittleness. Some of the defini-
tions are listed in Table II. The parameters developed
by Puttick [65], Mouginot [66] and Lawn and associ-
ates [40] are very similar, and indeed, have the same
relationship of hardness, Young’s modulus and frac-
ture energy or fracture toughness. This should not be
surprising because all trace their roots to an energy
balance whereby crack formation or propagation en-
tails conversion of strain energy to fracture surface
energy, analogous to the Griffith model. The specific
loading configurations and geometries modelled vary
somewhat, but inevitably internal strain energy,
r2/2E, is converted to fracture energy. The stress
squared term usually is converted to a yield stress
squared term, which is then converted to hardness
squared. The fracture energy and Young’s modulus
are converted to a K

I#
term

(r2/2E)]volume P 2c
&
]area

or

(r2/2E) P 2c
&
/D

and

D J (c
&
E)/r2

where D is a characteristic dimension such as the crack
size. If plastic deformation occurs, then r"r

y
JH,

and then

D J (c
&
E)/H2JK2

I#
/H2

The importance of the H/K
I#

or r
:
/K

I#
ratio in inden-

tation fracture was recognized by Evans and Wilshaw
[35], who stated that the higher the H, the larger the
cracks from corners of Vickers indentations. The H/E
ratio also appeared in their paper and was related to
the force necessary for a spherical indentor of a given
size to cause plastic flow. Lawn, Marshall, Evans and
coworkers expanded the fracture mechanics modelling
in a series of papers and eventually in [32, 39, 40] they
compared the different load dependencies of crack size
and indentation impression size that led them to pro-
pose H2/K2

I#
or H/K

I#
as an ‘‘index of brittleness’’.

These ratios, which were utilized as a convenient basis
for materials classification [32], repeatedly occur in
various equations for the initiation or propagation of
the specific, idealized crack models. These were used
to prepare fracture-deformation maps that delineate
‘‘deformation controlled’’ versus ‘‘fracture controlled’’
behaviour [34].

Our alternative brittleness parameter, (H
#
E)/K2

I#
was derived from an energy ratio or balance at the
hardness plateau. It is very similar to the H2/K2

I#
or

r2
:
/K2

I#
ratios cited above, but incorporates E rather

than another H. H and E have the same dimensions
(force/length2) and the respective brittleness para-
meters also have the same dimensions, which are
length~1. Unlike the H2/K2

I#
or r2

y
/K2

I#
ratios, B is not

coupled to any specific, idealized crack model. The

critical plateau loads, P
#
, are well above the threshold

loads, P*, for initiation of the idealized median, radial
or lateral cracks according to conventional indenta-
tion fracture models [34, 43, 44]. There is, however,
a connection between B and indentation crack mod-
els, thus a short review of indentation fracture mech-
anics is helpful.

Evans and Wilshaw [35] suggested that compari-
sons of measured crack lengths, c, and indentation
sizes, d, (i.e. c/d ratios) could be developed into
a method of measuring fracture toughness. Evans and
Charles [36] pursued this, and using a dimensional
analysis, realized that the c/d ratio related well to
K

I#
/(Hd~1@2), but only if a correction factor of (H/E)0.4

was applied, so that (c/d)J(K
I#
/Hd1@2) (H/E)0.4. The

material constants in the latter expression are
K

I#
/(H0.6E0.4), which is very close to our B. Lawn

et al. [44] modified the earlier models by showing that
the ratio of the radius of the plastic zone to the radius
of the indentation contact area was not constant but
varied with (E/H)1@2. The relationship for crack size, c,
and indent size, d, then became [44]

A
K

I#
Hd1@2B A

H

EB
1@2

J A
c

dB
~3@2

(21)

This representation with K
I#

normalized by H, and
H normalized by E, has become the norm in the
ceramics indentation fracture literature. The (H/E)1@2
term is usually incorporated along with geometrical
terms into a v

3
term that describes the residual stress

driving force for crack extension [34].
We observe that Equation 21 can easily be rewritten

A
HE

K2
I#
B J

c3

d4
(22)

So, nestled amidst dozens of relationships for crack
size, indentation size, hardness, load, fracture tough-
ness and assorted geometrical constants, it becomes
apparent that B has been an important factor in in-
dentation fracture mechanics all along. It seems rea-
sonable that a parameter for brittleness of a material
should incorporate Young’s modulus of the material.

4.1.2. Future work
Further work could be aimed at correlating B with
other fracture-deformation processes that may be
characterized by critical lengths or dimensions.
Brittleness, B, may be useful in characterizing erosion,
scratch, impact and wear resistances as well as the
machinability of brittle materials. In each case, the
ratio of deformation energy to fracture energy may be
important and could herald shifts in behaviour as
critical thresholds in controlling parameters are ex-
ceeded. B may not necessarily be useful in instances
where the loading is purely elastic: e.g. a plate with
a crack loaded to fracture in tension or thermal shock
fracture, in which case K

I#
or c

&
may be eminently

suitable.
B~1 has units of length and for the materials in

our study ranges from 0.8 to 7.0]10~9 m. Different
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proportionality constants (e.g. Equation 13) will be
applicable depending upon the specific loading condi-
tion and these could be difficult to derive other than
by empirical means.

In principle, fracture toughness may be evaluated
by measuring the hardness—load curves to find the
hardness transition point. The plateau hardness, H

#
,

and Young’s modulus, E, along with d
#
can be used in

conjunction with Equation 14 or Fig. 9 to solve for
K

I#
. We are hesitant to propose yet another indenta-

tion method for this purpose, but this procedure could
be very useful for characterizing small specimens or
single crystals. Much further work needs to be done,
however, to verify the universality of this approach
and to establish the uncertainty estimates of using this
method. Accurate and precise hardness readings will
be essential.

The accuracy and precision of the hardness
transition point measurement depends upon the
brittleness of the material. This is illustrated in Fig. 14.
Harder and more brittle materials have a transition at
lower load values and it is easy to detect the sudden
change in slope of the hardness—load curve. Fig. 5 (sili-
con carbide) and the aluminum oxynitride data in
[16] are good examples. On the other hand, less brittle
materials have transitions at higher loads, and much
greater care is needed to measure the data accurately
just before and after the transition. Figs 3 (alumina),
4 (Pyroceram) and 6—8 (silicon nitrides) demonstrate
this clearly. For the less brittle materials, diagonal
length readings accurate to within 1.0 lm, and prefer-
ably 0.5 lm are essential. Experimental scatter must
be carefully controlled lest the transition be obscured.
A minimum of five measurable indentations are
recommended at each load, and as we have noted
before, this may require quite a few indentations at the
higher loads. For all materials, brittle or not, hardness
should be measured over a broad load range, and
results should be plotted on linear (not logarithmic)
axes. Offset hardness axes such as shown in Figs 3—8
are recommended. Uncertainty bars are essential.

Figure 14 Hardness—load curves for silicon carbide and silicon
nitride. The carbide, which is harder and more brittle, has
a transition at a lower load. The transition is sharper and easily
detected. The nitride transition is at a higher load and requires more
careful measurements to characterize.

Fig. 8 illustrates some of these recommendations.
The transition is readily evident in Fig. 8a, which
emphasizes the data at the intermediate and higher
loads. On the other hand, Fig. 8b shows the same data
with a logarithmic horizontal axis and with additional
results from Berriche and Holt [9]. The higher scatter
in the latter data and the logarithmic axis overempha-
sizes the low load, high hardness data and the
transition point at 105 N is obscured or lost.

It often is necessary to use different hardness ma-
chines for different load ranges. This should be done
with caution because bias between machines may
exist. Universal strength testing machines should be
avoided or used with extreme caution because hard-
ness is very sensitive to loading rate and vibration. It
may be suitable to use more than one hardness ma-
chine to create the indentations, but then utilize only
one instrument for the diagonal size measurements.
We estimate that, with appropriate care, transition
points in terms of indentation load can be measured to
within $10%.

5. Conclusions
Vickers hardness—load curves for a number of brittle
ceramics exhibit a distinct transition to a plateau
constant hardness level that corresponds well to a re-
lationship between hardness, Young’s modulus and
fracture toughness. A new index of brittleness,
B,(HE)/K2

I#
, has been proposed that is derived from

deformation and fracture energy ratios and correlates
well with the observed hardness transition points.
Besides providing a practical scale for material com-
parisons, the brittleness parameter, B, has potential
predictive value in research and ceramic design ap-
plications.

Appendix
One possible energy balance for d'd

#
, based on

Equation 7, is

Pd " a
1
d2#a

2
d3#a

3
(d!d

#
)2 (A1)

where the additional a
3
(d!d

#
)2 term represents frac-

ture surface energy consumed by a new system of
cracking at d'd

#
. The fracture surface area for the

new crack system is assumed to scale with (d!d
#
).

Re-expressing Equation A1 in units of hardness

P

d2
"

a
1
d
#a

2
#a

3

(d!d
#
)2

d3
(A2)

or

H "

a@
1
d
#a@

2
#a@

3

(d!d
#
)2

d3
(A3)

Fig. A1 illustrates both the pre- and post-transition
point behaviour as functions of indentation diagonal
size. The last term of Equation A3 (which is also
plotted separately on the bottom of this figure) grad-
ually rises from a value of zero at d" d

#
to a

maximum of 0.15a
3

at d" 3d
#

and then gradually
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Figure A1 Hardness as a function of diagonal size according to
Equation 23. The magnitude of a@

3
determines whether the hardness

is constant (a@
3
&4a@

1
) or decreases (a@

3
&4a@

1
) past the transition

point.

diminishes. The effect of this term upon H depends
upon the relative magnitudes of a@

1
and a@

3
. If a@

3
&4a@

1
,

the hardness is nearly constant over a broad range of
indentation sizes as shown in the Figure. a@

3
values less

than this will lead to hardness diminishing with in-
creasing diagonal size. The case of a@

3
"0 is also

illustrated. Both the a@
1

and a@
3

terms incorporate the
material’s fracture surface energy, but the magnitude
of the latter term is expected to be higher because
there would be much greater actual surface area
created by the massive cracking associated with the
post-transition fracture term. Experimental hardness
data with a gradual decrease in H past the transition
point have been shown for alumina by Clinton and
Morrell [3]. This could be related to a rising R-curve
behaviour, in which case less cracking occurs than for
more brittle materials with a flat R-curve.
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